If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-4w-2=0
a = 1; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·1·(-2)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{6}}{2*1}=\frac{4-2\sqrt{6}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{6}}{2*1}=\frac{4+2\sqrt{6}}{2} $
| -5(-6v+6)-6v=6(v-7)-2 | | t/9+5=8 | | 12x-40=-4x | | -2(v+4)=v-9+2(6v+2) | | 12x-40=-4x= | | 3x-5=9x+3 | | 2(x-3)-7=18-5(x+4 | | 5m^2+30m-35=0 | | 4x-101=107-12x | | -44x(x+1=0) | | 2u²-5u+3=(u-3)² | | 6x-(3x+7)=4x-32 | | 150=e | | 75-16x^2=0 | | -50-2x=52+x | | 6b-7=11 | | b+2.7=10 | | 8x+84=-1 | | 3+3(2w-2)=-3(5w-2)+3 | | 2x-78=-7x+66 | | 5b-14=-5+8b | | (2x+2)=26 | | -19-14x=37-2x | | H=-16^2+160t+16 | | 1/2(x-6)=22 | | 2y2*y=-3 | | (5x-85)=90 | | (4x+5)(4x–5)=0 | | 0=1-1/4-1/16x | | -2(5y-2)+4y=4(y+4) | | -158-6x=128+5x | | 4m2+28m=-49 |